
Radiation Protection and Nuclear Safety in a PET-Radiopharmaceuticals Production Site

Peter Covens, VUB

PET-radiopharmaceutical production site?

- Production of positron-emitting radiopharmaceuticals!
- PET-imaging in diagnostic nuclear medicine
 - Early diagnosis and follow of treatment of many diseases
 - Wide applications in oncology

Positron-emitting radiopharmaceuticals (1)

Mainly (very) short lived radionuclides

Wide range of radiopharmaceuticals

Radionuclide	Half-life	(Common) Production routes	Radiopharmaceuticals
¹⁸ F	110 min	¹⁸ O(p,n) ¹⁸ F	¹⁸ FDG, ¹⁸ FET, Na ¹⁸ F, ¹⁸ F-PSMA,
¹⁵ O	2 min	¹⁵ N(p,n) ¹⁵ O	C ¹⁵ O ₂ , ¹⁵ O ₂ ,
¹¹ C	20 min	¹⁴ N(p,α) ¹¹ C	¹¹ CO ₂ , ¹¹ C-methionine,
¹³ N	10 min	¹⁶ O(p,α) ¹³ N	¹³ N-ammonia
⁶⁸ Ga	68 min	⁶⁹ Ga(p,2n) ⁶⁸ Ge → ⁶⁸ Ga ⁶⁸ Zn(p,n) ⁶⁸ Ga	⁶⁸ Ga-dotatoc, ⁶⁸ Ga-dotatate, ⁶⁸ Ga-PSMA,
⁶⁴ Cu	12.7 h	⁶⁴ Ni(p,n) ⁶⁴ Cu	⁶⁴ Cu-ATSM , ⁶⁴ Cu-SARTATE,
⁸² Rb	1.2 min	85 Rb(p,4n) 82 Sr \rightarrow 82 Rb	⁸² RbCl,
124	100 h	¹²⁴ Te(p,n) ¹²⁴ I	Na ¹²⁴ I,
⁸⁹ Zr	78 h	⁸⁹ Y(p,n) ⁸⁹ Zr	⁸⁹ Zr-DFO,

Positron-emitting radiopharmaceuticals (2)


- > Cyclotron production of radionuclides!
- Practical issues short-lived radionuclides
 - Radionuclide production close to radiopharmaceutical labelling
 - Radiopharmaceutical labelling close to clinical application
- Radiation protection issues short-lived radionuclides
 - Rapid decay of sources 🙂
 - Large activities have to be produced to enable clinical use e.g. the entire day Image 2010
- Nowadays still dominated by ¹⁸F and ¹⁸FDG

A production site at a glance

Cyclotron

(GMP)-Radiopharmacy

Good Manufacturing Practice!

Belgian license classification

Art 3.1 and 3.3 RD 20/07/2001

• Institutions with particle accelerators designated for the production of radionuclides

or

Institutions with a monthly production > 500 000 exemption level (500 GBq ¹⁸F)

Class IIA installation!

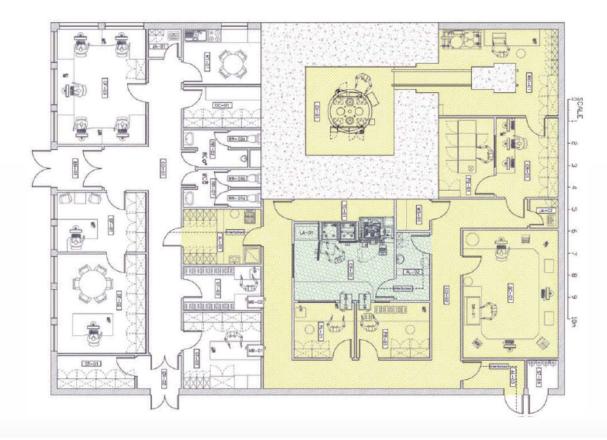
Safety report of class IIA

- > Art 7.2/1 RD 20/07/2001: license of class IIA subjected to safety report
- Content specified in RD
 - Description of the institution
 - Site characteristics
 - Infrastructure
 - Risk analyses
 - Description of safety systems
 - Waste management

- Radiation protection
- Internal organisation
- Technical specifications
- Decommissioning
- Emergency plans
- To be updated for each modification and at least yearly (transfer to FANC)

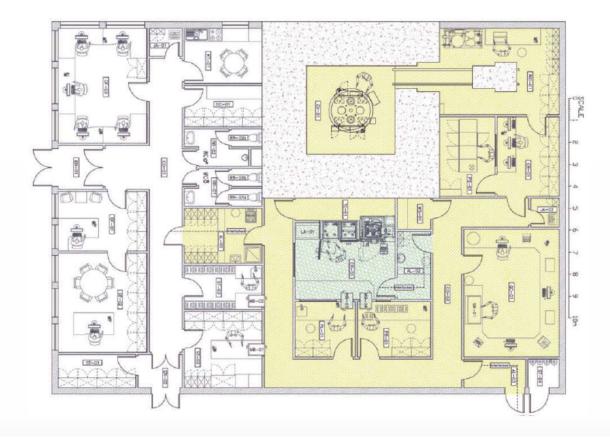
Facility design

- > Appropriate design!
 - Product quality
 - Safety
- Result of risk analyses will impact design and vice versa!
 - Compromises to be made
 - Each site has unique characteristics
 - To fulfil both GMP and radiation protection / nuclear safety requirements
 - Some design details can simplify / complicate future working procedures



Cyclotron Produced Radionuclides: Guidance on Facility Design and Production of [¹⁸F]Fluorodeoxyglucose (FDG)

IAEA

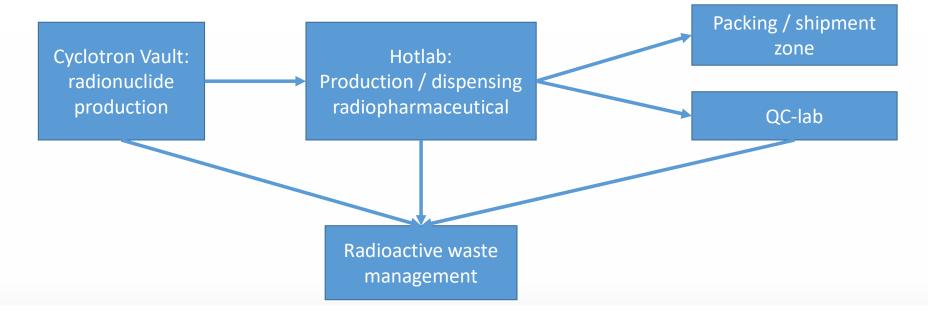

Main components (zones) of a generic facility

- Controlled areas
 - Cyclotron vault and control room
 - Hotlab for production of radiopharmaceuticals
 - QC-lab: Quality Control of radiopharmaceuticals
 - Packing / shipment zone
 - Technical installations including waste storage, ventilation system, chimney
 - Other areas
 - Offices
 - Storage of consumables

Pressure cascade

\succ GMP \leftrightarrow Radiation Protection

- RP: protect the worker and the environment from radioactive contamination (rooms in negative pressure)
- GMP: protect the radiopharmaceutical from bacteriological contamination from the environment (rooms in positive pressure)


Compromises

- Use negative pressure in areas with the highest radioactive contamination risk
- Fulfil the requirements of the GMP classification of areas (class A-B-C-D) and use positive pressure were needed

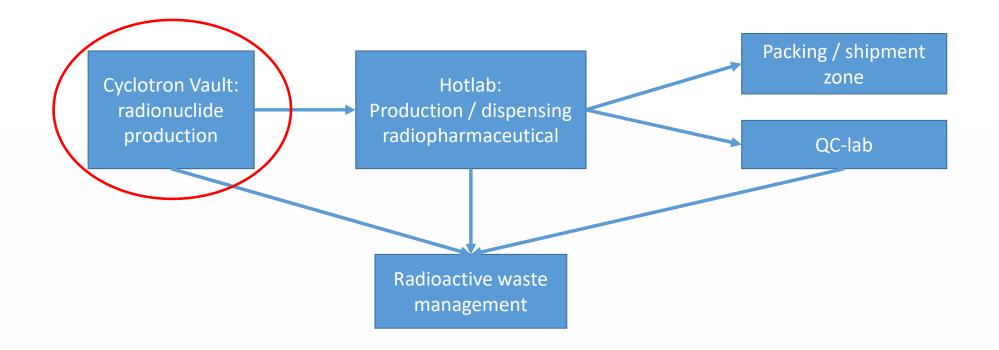
The daily road of radiation sources

- > Each step of the production process: proper risk analysis
- Not limited to individual areas, also transfer of sources
- Proper attention to nuclear safety issues

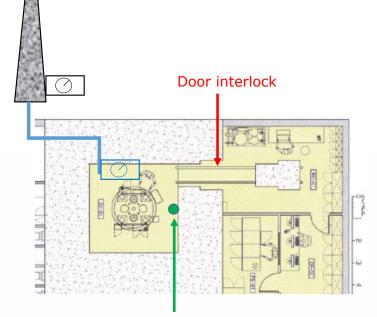
Nuclear safety

> Why?

- Equipment involving high dose rates (cyclotron)
- Relatively large activities being produced / handled
- ➤ How?
 - Foresee proper operating conditions
 - Avoid accidents
 - Limit impact of potential accidents / anomalies
- Ensure protection
 - Workers
 - Public
 - Environment

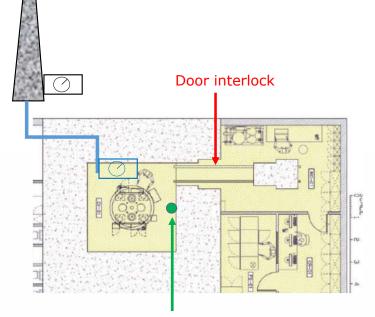


When everything runs smoothly...



The daily road of radiation sources

Radionuclide production (1)



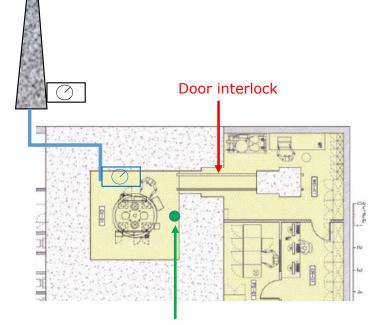
Ambient dose-rate measurement

- Irradiation of targets with protons inside cyclotron vault
- > Negative pressure
 - Lowest of facility
 - Interlock on cyclotron start-up
- During irradiation
 - Very high dose-rates (> Sv/h)
 - Target activities at end of irradiation: 100-1000 GBq
 - Activation of air (very short lived radionuclides)
 - Activation of cyclotron components

Radionuclide production (2)

Ambient dose-rate measurement

Door interlock


- Cyclotron operation
- Ambient dose-rate measurement

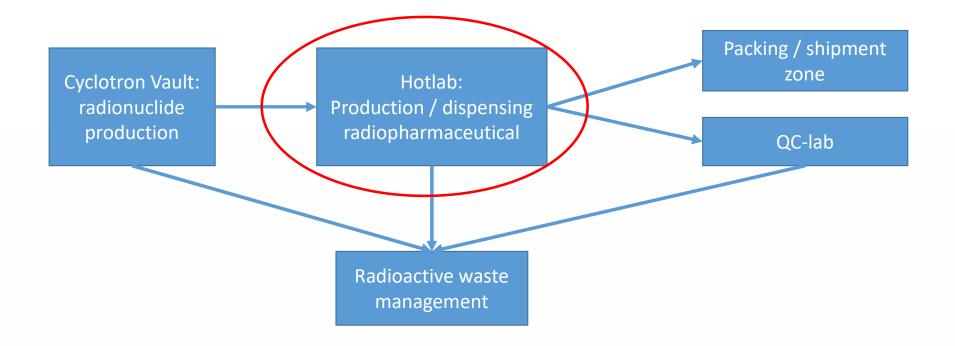
After irradiation

- Transfer of target content \rightarrow Hotlab
- Activated air quickly removed by standard multiple air changes inside the vault
- Ambient dose-rate > 1 mSv/h for several hours (door interlock prevents vault entrance)

Radionuclide production (3)

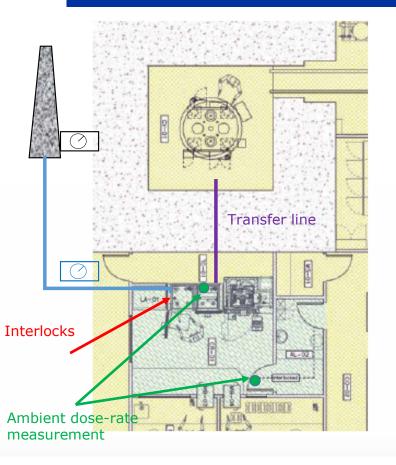
Ambient dose-rate measurement

Worker exposure outside the vault


- Optimised by vault design (concrete shielding)
- Very limited during routine irradiations
- Worker exposure during cyclotron maintenance
 - Relatively high dose rates in close contact with cyclotron parts (> 1 mSv/h)
 - Periodic maintenance can lead to 0.5-1 mSv per month (~ 5 mSv/y)

Dosimetry of workers

- Passive chest dosimeter, extremity dosimeter
- Active alarm dosimeter



The daily road of radiation sources

Radiopharmaceutical preparation (1)

Transfer of irradiated target through shielded transfer lines from cyclotron to hotcell in production room (hotlab)

- Small volumes (2 4ml)
- Dose rates up to 20 μSv/h in e.g. corridors during few minutes
- Visual / auditive signal of ongoing transfer
- Interlock between target transfer ↔ open hotcell (2 directions)
- Interlock between transfer \leftrightarrow hotcell negative pressure

Production room

- Positive pressure (GMP-requirement)
- Ambient dose rate monitoring
- Contains production hotcell(s), dispensing hotcell(s)

Radiopharmaceutical preparation (2)

Production hotcell

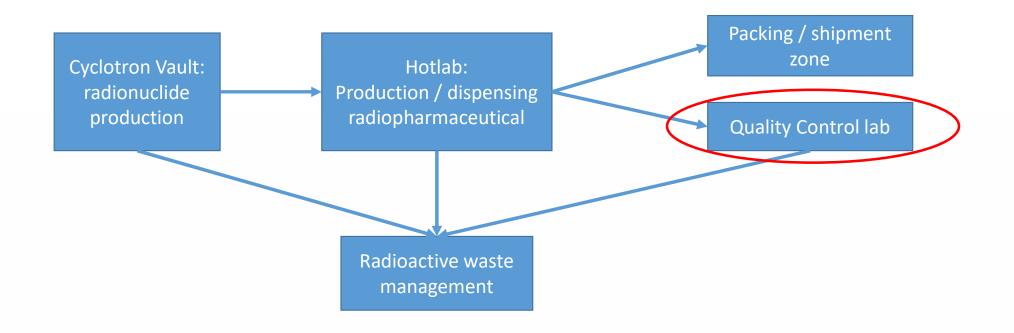
- Negative pressure (RP-requirement), leak tight
- Designed to receive high activities of PET-radionuclides
- Ambient dose rate measurement inside
- Interlock: ambient dose-rate measurement ↔ hotcell door
- Full automatic synthesis module (e.g. ${}^{18}F \rightarrow {}^{18}FDG$)
- Release of volatile ¹⁸F-compounds during synthesis
 → ventilation system

Radiopharmaceutical preparation (3)

Dispensing hotcell

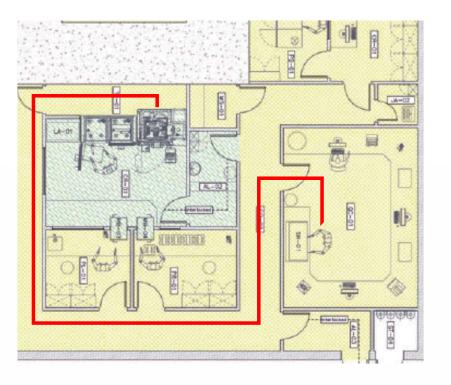
- Positive pressure (GMP-requirement), leak tight
- Pre-chamber to enter consumables (GMP-requirement)
- Designed to receive high activities of PET-radiopharmaceuticals
- Ambient dose rate measurement inside
- Interlock: ambient dose-rate measurement ↔ hotcell door
- Fully automatic dispensing module
- Drawer system delivers vials in shielded containers

Radiopharmaceutical preparation (4)



Worker exposure

- Very limited during routine productions
- Contamination risk during preparation synthesis (residual long-lived radionuclides)
- Dosimetry of workers
 - Passive chest dosimeter, extremity dosimeter
 - Active alarm dosimeter

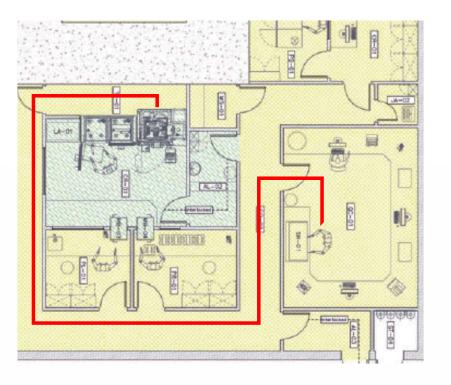


The daily road of radiation sources

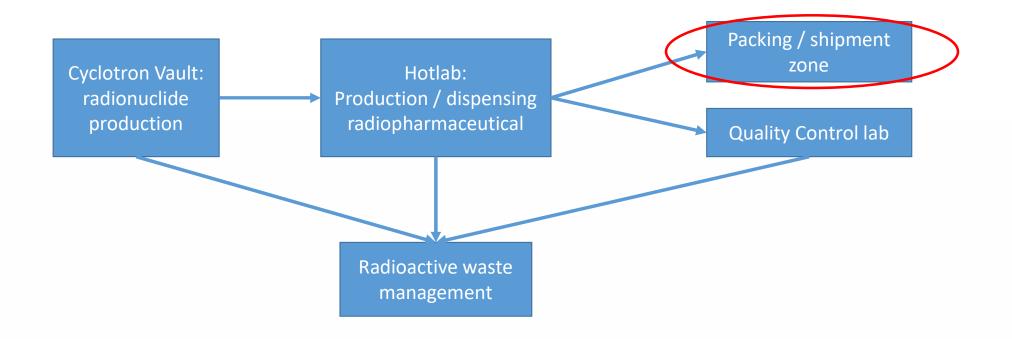
Quality Control (1)

Transport of quality control sample in shielded container from hotcell drawer system to QC-lab

> QC-lab

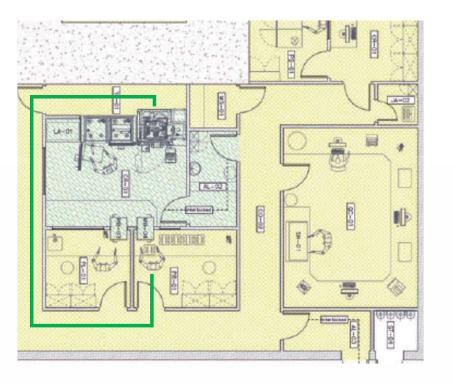

- Organised as "ordinary" radionuclide laboratory
- Negative pressure (RP-requirement)
- Workbenches with table top lead-shielding
- QC-apparatus

Quality Control (2)



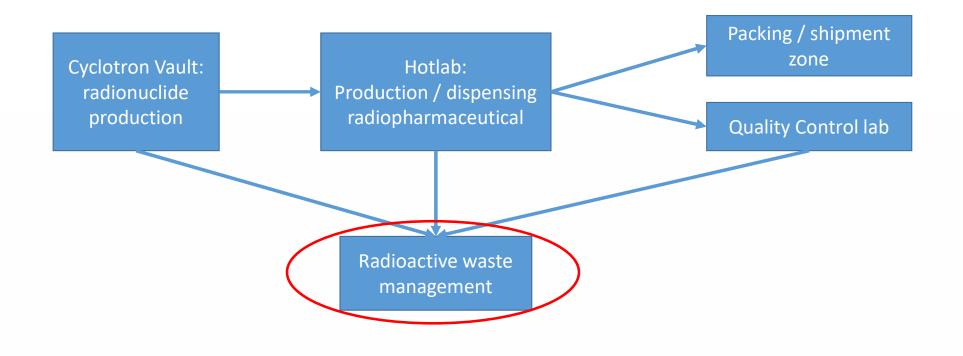
Worker exposure

- Relatively low activities (2 GBq/day) → limited external exposure
- Manual handling of sources
- Contamination risk during preparation of samples / dilutions / manipulating QC-apparatus
- Dosimetry of workers
 - Passive chest dosimeter, extremity dosimeter



The daily road of radiation sources

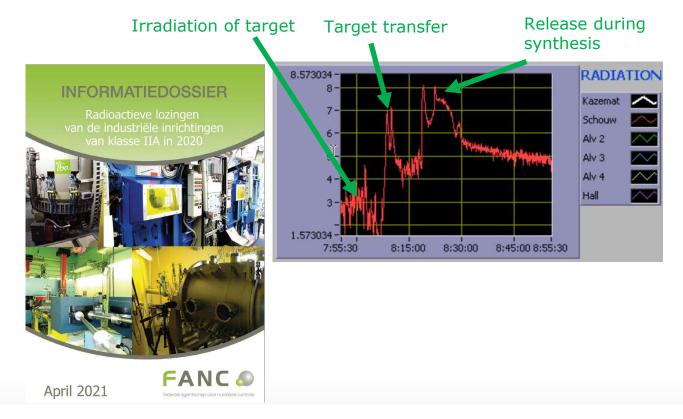
Packing multidose vial(s) for transport


Transport of multidose vial(s) in shielded containers from hotcell drawer system to shipment zone

Shipment zone

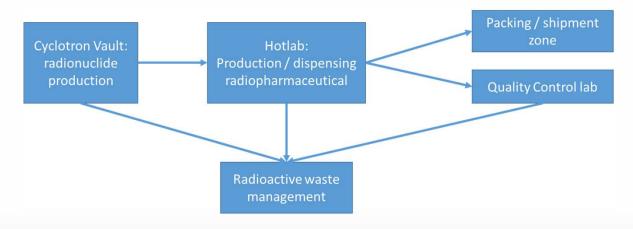
- No specific negative/positive pressure required
- Zone for administrative tasks, designed to handle sealed packages, preparation of transport documents
- Performing package dose rate measurements, labelling, sealing transport packages
- Dose rates up to 100 µSv/h
- Dosimetry of workers
 - Passive chest dosimeter

The daily road of radiation sources


Radioactive waste management

- Radioactive waste generated during all steps of the production process
- Relatively small volume, mass
- > Cyclotron maintenance
 - Activated cyclotron parts
 - Medium high activities containing long-lived radionuclides
- Radiopharmaceutical synthesis
 - Short-lived high activity waste decays in hotcell for a few days
 - After decay short-lived waste: relatively low activities of long-lived radionuclides!
- QC: relatively low activities of short-lived waste
- If properly managed very little contribution to worker exposure!

Radioactive emissions


- Production of PET-radiopharmaceuticals involves the emission of radioactivity
- Emission optimised
 - Filtration system
 - Collection bags inside hotcells
- Maximum emission values specified in the licence
- Continuous chimney monitoring
- Monthly reporting to FANC

Training, education and working procedures

- Entire production process cannot run smoothly without:
 - Sustainable working and safety procedures for each step
 - Well educated and trained staff
 - Well educated and trained Radiation Protection Officers participating in daily production process

That's not all! When something does not run smoothly...

Risk analysis for abnormal conditions

- "What if?" analysis and radiological impact studies needed (worst case scenarios)
 - Failure of one or more safety systems
 - Accidental release of radioactivity
 - Radioactive contamination of staff members
 - …
- Provide redundant solutions where possible
- (Emergency) procedures needed
 - Some may result in a very temporary production delay
 - Other may result in a facility shutdown for a specific period

Responsibility / task of facility management

Sustainable maintenance program for technical installations

- HVAC
- Fire safety
- Safety systems

Could require temporarily facility shutdown

• •••

Control program

- Periodic testing of interlocks (HVAC, target transfer, opening doors,...)
- Periodic testing of integrity of transfer lines
- Hotcell leakage tests
- QC ambient dose-rate monitors, alarm dosimeters, contamination monitors, chimney monitor
- All other specific technical infrastructure that can have impact on radiation protection and nuclear safety

To conclude...

- Radiation protection and nuclear safety in a PET-radiopharmaceutical production site starts with a proper risk analysis and facility design!
- > High exposure rates \rightarrow Class IIA \rightarrow special regulatory requirements
- Daily radiation protection of workers is (should be) supported by numerous safety systems / working procedures
- > Under normal conditions following dedicated procedures:
 - Highest risk for external exposure of workers: during cyclotron maintenance
 - Highest contamination risk for worker exposure: during QC
- Procedures for abnormal situations!
- > QA/QC in RP and nuclear safety by maintenance and control program

Thanks for the attention

