Orphan Sources

Katleen De Wilde Industrial Facilities FANC

PROGRAMME

- Introduction/regulatory framework
- Registration and follow-up
- How does an intervention take place?
- Who pays?
- Information to sector concerned
- Examples

Introduction/regulatory framework

BRAZIL (1987) - The Goiâna radiological accident

Teletherapy machine with Cs-137

Activity: 50.9 TBq (93g CsCl)

Dose rate at 1 m: 4.56 Gy/h

Contaminations of houses, public places, vehicles, people,...

200 people evacuated

3,500 m³ radioactive waste

271 people contaminated

20 people hospitalised

4 deaths

\$20 million

Belgium (2011)- Duferco

Cs-137 in scrap

Activity: 10 GBq

- Operation of furnace was stopped (15/09/2011 -> 10/10/2011)
- Medical examination of workers → no health implications
- Sampling of area → no contamination found
- Contaminated dust: 600 tonnes (t)
 - 350 t > 10 Bg/g = radioactive waste \rightarrow process was developed
 - +50 t secondary waste generated > 10 Bq/g → radioactive waste
 - 150 t of dust between 1 and 10 Bq/g \rightarrow disposed of as hazardous waste
 - 100 t < 1 Bq/g \rightarrow released

Legal framework

- Licensing, control and inspection mechanisms never 100% foolproof
- Use of radionuclides in 20th century not always controlled as today
- Certain applications (now forbidden) were used in public domain

for example: radium-based paint used in clocks, radioactive lightning rods, radioactive smoke detectors,...

In collaboration with ONDRAF/NIRAS Regions Sector concerned

RD 14/10/2011 – Royal Decree concerning the Detection of Radioactive Material in certain Material and Waste streams concerning the Management of Facilities sensitive to Orphan Sources

Royal Decree

Recycling park
Scrap yard < 25,000 tons/year
Sorting site

Scrap yard > 25,000 tons/year Foundry > 25,000 tons/year Waste incinerator Public waste landfill

Minimum requirements

- Training
- Notification to FANC
- Appointment of "responder"
- Vigilance procedure
- Temporary storage room

Guidelines (FANC decision 17/11/2014)

Forms

Annex 1: declaration form (orphansources.be)

Annex 2: inventory of radioactive substances

Annex 3: registration form for portal monitor

Procedures

Annex 4: procedure in the event of detection of radioactive stubstances using portal monitor

Annex 5: search for a localised source

Annex 6: search for a homogeneous source

Annex 7: characterisation and determination of final destination by radiation

expert

General principles of Royal Decree & guidelines

Personnel is not occupationally exposed

Dose limit = $1,000 \mu \text{Sv/year}$

Acceptation: no radioactive risk Intervention by RESPONDER

Intervention by radiation expert

General principles of Royal Decree & guidelines

At portal monitor:

Measure (cps) > 20 x background (cps)

When approaching vehicle:

Measure (μ Sv/h) > 5 μ Sv/h

When searching for and isolating source:

Dose rate at chest level > 20 μSv/h

Dose rate at 10 cm from source > 500 μ Sv/h

General principles of Royal Decree & guidelines

Return to sender? NO

- \Rightarrow Only if
- i. Load from abroad (*after <u>approval</u> by FANC*)
- ii. Load from hospital
- iii. Sender has portal monitor, registered with the FANC

NEVER when doserate > 5μSv/h!

General principles of Royal Decree & guidelines FANC

On-site storage possible

Conditions:

- Dose rate in storage room < 100 μSv/h
- Dose rate outside storage room < 1 μSv/h
- Inventory
- Max 1 year

Registration and follow-up

Registration and follow-up of detections

How does an intervention take place?

STORAGE MEETS REQUIREMENTS

URGENT REMOVAL NON-COMPLIANT STORAGE

REMOVAL

within 24h

ANNUAL REMOVAL

OSSF contacts

RADIATION

EXPERT

FANC gives the

FANC gives the order to NIRAS

REMOVAL within 1 month

OSSF contacts
RADIATION
EXPERT

Who pays?

Who pays?

- RD of 81 art. 15
 - A source, declared by FANC as orphan source and waste, is charged to the **insolvency fund**.
 - FANC must designate the financially liable party according to **decision scheme**.

Protocol agreement between FANC and ONDRAF/NIRAS on modalities applicable to the financial settlement of radioactive orphan sources as radioactive waste

- Decision scheme
- Tasks of FANC and ONDRAF/NIRAS
- Costs (not) charged to insolvency fund

NOT LIMITED TO ORPHAN SOURCE SENSITIVE FACILITIES (OSSF)

Who pays?

What the fund pays for:

- ONDRAF/NIRAS services
- Intervention by radiation experts (characterisation and packaging)
- Transport, interim storage, treatment, conditioning, storage, final disposal

What the fund does **NOT** pay for:

- FANC services
- Operator services (operation of the portal monitor, intervention, detection and recovery of the source)
- Events resulting from late or nondetection (decontamination of installations and sites and management of radioactive waste)

Information to sector concerned

Sector concerned

750 orphan source sensitive facilities

263 registered portal monitors

Information to sector concerned

Website:

- General info
- FAQ
- Posters
- Film
- Presentations

Trainings for responders, managers,...

Yearly newsletter

Declaration tool: orphansources.be

HOME OVER ONS D

REX some examples/statistics

3,763 alarms between 1/1/2012 and 1/1/2023

% alarms/type

Number of alarms/year

254 interventions by radiation expert between 1/1/2012 and 1/1/2023 (7%)

853 orphan sources (paid by NIRAS) between 1/1/2012 and 1/1/2023

• Domestic waste or waste from hospitals

Trader (NoPM) Irader

(PM)

0%

• I-131, Tc-99m, Lu-177

Unknown _ (blank) _Abroad

0%

NORM (9%)

- Lantern mantles
- Thorium
- 3 μSv/h

- Mineral wool
- Thorium
- 0.5 2 μSv/h

- Fibreglass
- Thorium
- Some μSv/h

- Welding rods
- Thorium
- 25 μSv/h

NORM (9%)

Scaling

Contaminated filter

Oven with refractory materials

Ra-containing material (7%)

- Altimeter
- Radium
- 5 μSv/h

- Compass
- Radium
- 3 μSv/h

- Key ring
- Radium-226, Caesium-137
- A few mSv/h!

Ra-containing material (7%)

- Lifeboat
- Radium
- 80 μSv/h

- Toy
- Radium

Ra-containing material (7%)

Ra-226: 358 MBq 10,000 µSv/h at 1m

Contaminated material (4%)

- At border/scrap yards/foundries
- Co-60, Ir-192, Sr-90
- $0.3 \mu Sv/h xx mSv/h$ in contact

Minerals (4%)

- Natural uranium
- $1 \mu Sv/h mSv/h$

Chemical products (3%)

- Pharmaceutical products
- Uranyl acetate / Thorium
- 0.1 15 µSv/h

Lightning rods (2%)

A few mSv/h

- Nuclides
- Dose rates

Radioactive pacemaker

0.13 g. Pu-238 = 92.5 GBq = 2.5 Ci Dose-equivalent inhalation = \pm 400,000 Sv (!)

Inhalation of 1.65 μ g = 5 Sv

Never 100% prevention of accidents

- Detection limits of portal monitors;
- Alfa-radiation sources;
- Well-shielded sources;
- Defect, maintenance of portal monitor;

•

Shielded gauging system

Typical activity when new: Cs-137: 370 MBq to 370 GBq;

Co-60: 37 MBq to 37 GBq

Am-241: 370 MBq to 74 GBq

- 0.06 mg Ra-226
- 600 μSv/h closed state
- $> 1,000 \mu Sv/h open state$

From a hospital – shielded and encapsulated Cs-137 - 500 MBq

External dose rate = 50,000 μSv/h (!) in contact IGNORED BY FIRST SCRAP DEALER

Conclusion

Belgian approach is a <u>total approach</u> with <u>obligations</u> for the sector involved, but also <u>guidelines</u>, <u>information</u> and a <u>financial</u> <u>solution</u>.

→ Internationally recognised as good practice by IAEA

Thank you!