The potential future of targeted radionuclide therapy: implications for occupational exposure?

P. Covens

Vrije Universiteit Brussel

Introduction: Targeted Radionuclide Therapy (TRT)

Systemic treatment

Molecule labelled with a radionuclide delivers a toxic level of radiation to disease sites

Can eliminate both primary tumour sites and metastatic cells

External beam radiation therapy with high-energy Xrays

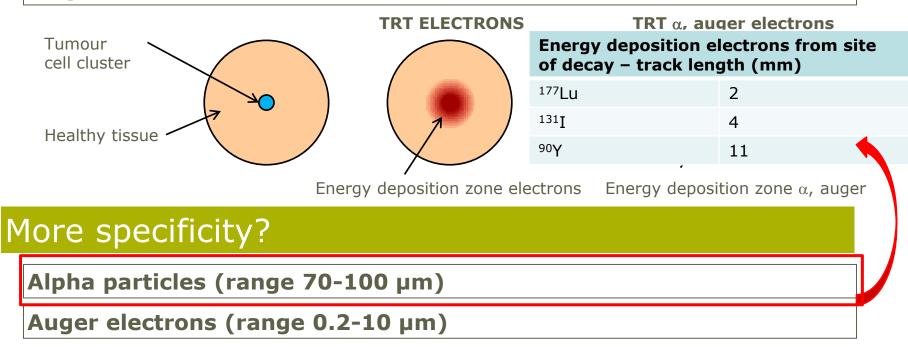
Ionising radiation can exert "bystander" effects

Tumour-directed drugs and toxins

Current radionuclide therapies

Use β⁻ emitting radionuclides (¹³¹I, ¹⁵³Sm, ⁸⁹Sr, , ⁹⁰Y, ³²P, ¹⁷⁷Lu)

 β^{-} particles (electrons) deliver energy to tumour cells


Some radionuclides have "theranostic" properties (131I, 177Lu)

(More) Targeted Radionuclide Therapy

β - (electrons) in radionuclide therapy

Emitted electrons do not deposit their main energy to the micrometastatic tumour cells

Energy (and its effects) will be released along a several millimetre long electron track

Why α -particles? (1)

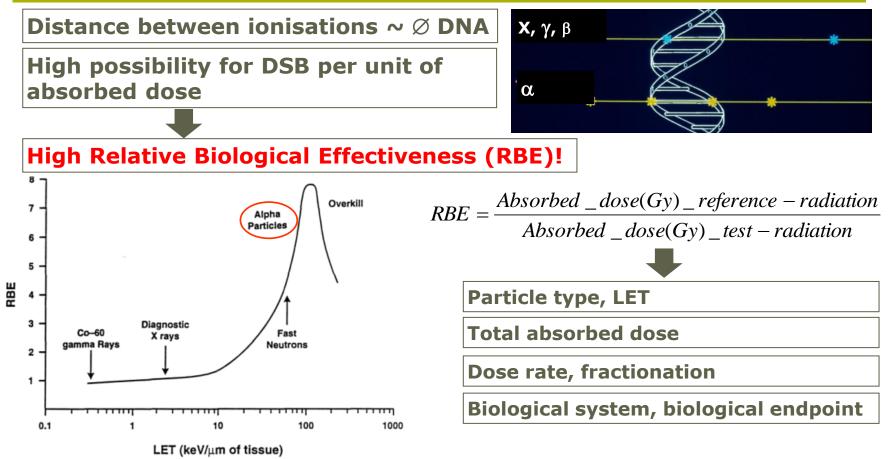
Typical α -particles emitted by radionuclides of interest

High Linear Energy Transfer (LET): 60-110 keV/µm

Short path length/range in tissue: 70-100 µm

High potency and specificity!

Radionuclide therapy with β -emitters


Long tissue range (...> 1 mm), difficult to sterilise individual tumour cells solely

Low LET: 0.1-1 keV/µm

Exception: Auger electrons!

Why α -particles? (2)

High LET and RBE

Why α -particles? (3)

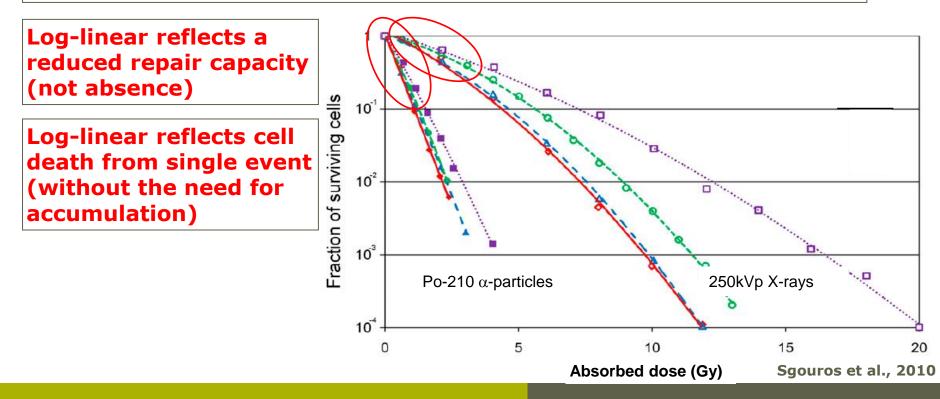
RBE(α) for deterministic effects \approx 5

Based on review of literature: $3 < RBE(\alpha) < 5$ for cell killing

Recommended for projecting the possible deterministic biological effects associated with α -particle absorbed dose!

$W_R(\alpha) = 20$ (radiation protection)

Relates to stochastic endpoints (e.g. cancer induction)

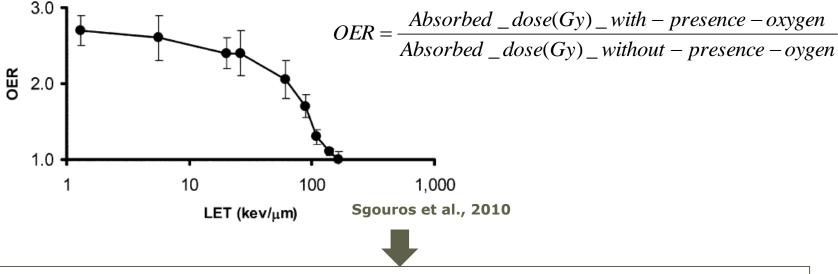

Important for occupational exposure

Why α -particles? (4)

Log-linear cell survival curve

Low LET: initial shoulder on the cell survival curves reflects the repair (Linear-quadratic model), Quadratic: accumulation of damage

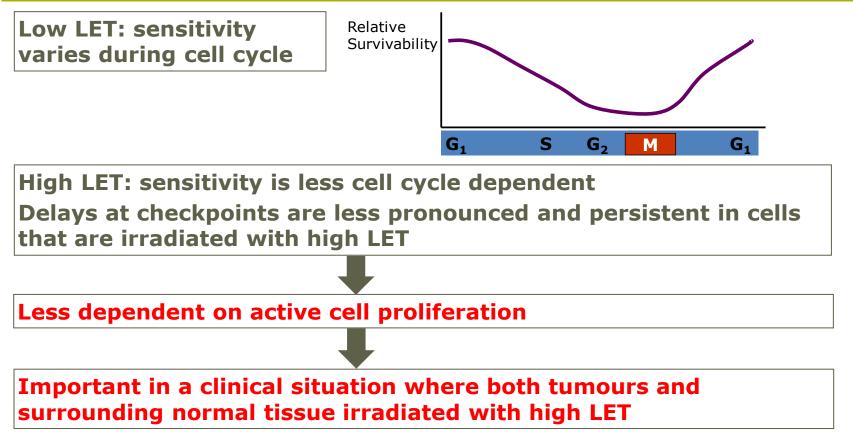
High LET: no initial shoulder (log-linear at both high and low doses)



Why α -particles? (5)

Oygen enhancement ratio (OER)

Important factor in the response of cells to ionising radiation


Effect strongly influenced by the LET

Ability of α -particles to overcome radioresistance due to hypoxia!

Why α -particles? (6)

Sensitivity of cells during cell cycle

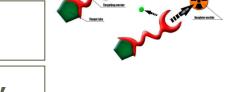
Radiobiological properties α -particles

Specificity

Potency

Log-linear cell survival curve

Less dependent on oxygenation


Less dependent on active cell proliferation

Standard in targeted radionuclide therapy?

The availability of suitable α -emitting radionuclides

α-emitting daughters: toxicity healthy tissues (recoil energy breaks chemical bound vector)

Many pre-clinical research and clinical trials going on, first targeted α -therapy entered clinical routine recently

$\alpha\text{-}emitting\ radionuclides\ in\ radiation\ protection?$

α -emitting radionuclides are troublemakers!

Nuclear industry / NORM industry: long lived actinides, long-lived radium

Potential dispersion by noble gases (Rn)

High radiation weighing factor (W_R=20) for stochastic effects

Detection difficulties: specific α -detection systems not (yet) available in a clinical environment

High potential radiation dose to workers, general public?

How to tackle?

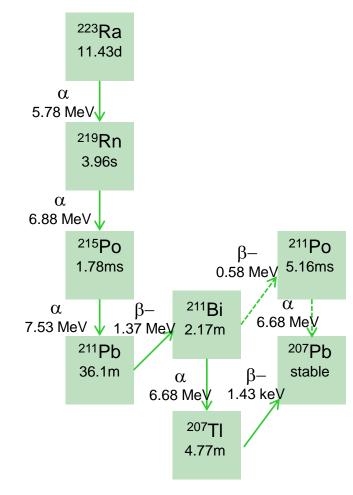
Be aware of the source characteristics and potential exposure pathways!

Dedicated risk analysis

$\alpha\text{-emitter}$ candidates for TAT

					Clinical
	Pre-clinical phase				routine
	²²⁵ Ac	²¹³ Bi	²¹¹ At	²¹² Bi	²²³ Ra
T _{1/2}	10d	45.6m	7.2h	60m	11.4d
Equilibrium daughters	<1h	<1s	<1m	<1h	<1d
Imaging potential	x	X	Х	x	x

Relatively short half-live

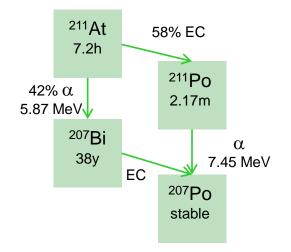

Daughter radionuclides in equilibrium

Presence of other emissions (β , γ , **X)**

α -emitter candidates for TAT

	Pre-clinical phase				Clinical routine
	²²⁵ Ac	²¹³ Bi	²¹¹ At	²¹² Bi	²²³ Ra
T _{1/2}	10d	45.6m	7.2h	60m	11.4d
Equilibrium daughters	<1h	<1s	<1m	<1h	<1d
Imaging potential	x	x	x	x	x

Daughters in equilibrium: ²²³Ra



Daughter nuclides with very short half-lives are very fast in equilibrium (~ 5 h after production)

1 kBq 223Ra after equilibrium: 1 kBq 219Ra 1 kBq 215Po 1 kBq 211Pb 1 kBq 211Pb 1 kBq 211Bi ~1 kBq 207TI Total: ~ 6 kBq

In practice all daughters have the same half-live of 11.43 days!!!

Daughters in equilibrium: ²¹¹At

Branching decay of mother radionuclide

Daughter nuclide ²¹¹Po with very short half-live is very fast in equilibrium (< 1 min after production)

1 kBq ²¹¹At after equilibrium:

0.58 kBq ²¹¹Po

<<<< activity ²⁰⁷Bi (not in equilibrium)

Total: 1.58 kBq

In practice ²¹¹Po has the same half-live of ²¹¹At (7.2h)

Other emissions (β , γ , X)?

The decay of specific radionuclides denoted as certain particle emitter is rarely characterised to solely the emission of that certain particle!

Presence of other emissions (β , γ ,X) during decay of mother radionuclide and/or daughters

Disadvantages

Medical absorbed dose to healthy tissues

Potential for increased radiation exposure staff, public

Advantages

Imaging capabilities \rightarrow pharmacokinetics \rightarrow patient dosimetry

Calibration of therapeutic patient doses

Detection capabilities in the framework of radiation protection (exposure staff and public, waste management,...)

Patient references activities

	Diagnoses	Ref. Activity
F-18	FDG PET-scan	250 MBq
Tc-99m	Bone scintigraphy	740 MBq
	Therapy	Ref. Activity
Sr-89	Palliation bone metastasis	150 MBq
I-131	Hyperthyroidism	370-1000 MBq
I-131	Thyroid cancer	3700-7400 MBq
Sm-153	Palliation bone metastasis	2600 MBq
Ra-223	Palliation bone metastasis	3.5 MBq
At-211	Clinical trial in treatment of recurrent brain tumor	70-100 MBq

Unusual low activities!

Danger of banalising α-therapy in the framework of radiation protection?

Evaluation of radiation protection data

External radiation to workers (no contribution of α -particles)

	²²³ Ra (3.5 MBq patient dose)	²¹¹ At (100 MBq patient dose)	
Dose rate patient 1 m	0.2 μSv/h 100% β/γ	<0.1 µSv/h 100% X	Very low compared to typical bone scintigraphy procedure
Dose rate unshielded syringe in contact	90 mSv/h >90% β	~10mSv/h 100 % X	Comparable to or lower than typical bone scintigraphy procedure

Evaluation of radiation protection data

Radiation to workers (very large contribution of α -particles)

		²²³ Ra (3.5 MBq patient dose)	²¹¹ At (100 MBq patient dose)	
	Dose rate droplet (20µl) in contact with the skin (1% injected act.)	120 mSv/h >95% β	5 mSv/h 100% X	Comparable to typical bone scintigraphy procedure
	Effective dose after ingestion of activity in a 20 µl droplet (1% injected act.)	6 mSv >95% α	11 mSv >99% α	Very high compared to typical bone scintigraphy procedure
- - 	Effective dose after inhalation of activity in a 20 µl droplet (1% injected act.)	240 mSv!!! >95% α	110 mSv!!! > 99% α	Very high compared to typical bone scintigraphy procedure
Hygienic measures/contamination checks:				

cornerstone radiation protection procedures!

Hygienic measures in handling α -emitters

Important hygienic measures should be taken

Production

Preparation

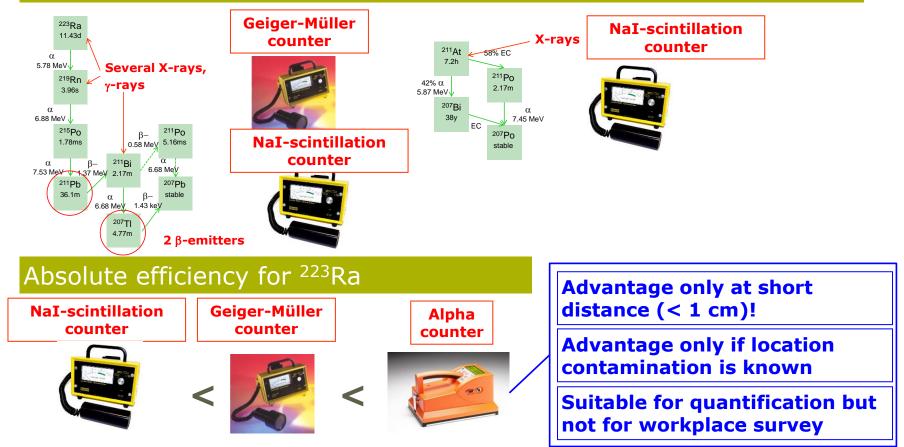
Administration

Patient care

Focus Standard Operating Procedures

Prevention

Contamination management


Contamination survey

Content of the SOP should be "especially α-emitter dedicated" (different from daily routine SOPs)

Contamination surveys of α -emitters

Run to the shop for α -counter?

Use other emissions in your advantage

To conclude...

Based on the radiobiological properties of High LET radiation, TAT has a large potential

Several trials going on using typical radionuclides suitable for TAT

²²³RaCl₂

Already entered in clinical routine

First routinely use of α -emitters in medicine

Despite the relatively low reference activities, dedicated radiation protection attention is needed

Thanks for the attention!